Field Analysis on Magnetic Transmission Mechanism of Downhole Tur- bine Generator

نویسندگان

  • Li Sisi
  • Peng Yong
چکیده

New downhole turbine generator can transmit the high speed rotation of the turbine to the rotor of the generator without contact by magnetic transmission mechanism to provide continuous power. Driving torque on magnetic transmission mechanism is a key parameter. This paper mainly studies the field on magnetic transmission mechanism of downhole turbine generator by using ANSYS software. The effects of thickness of permanent magnets, thickness of distance sleeve, the average radius of working field, air gaps and rotating speed on torque were quantitatively analyzed, and eddy current in distance sleeve with different structure parameters were also analyzed. Through the analysis, it can be shown that the influence of the eddy current in distance sleeve should be considered when designing the transmission mechanism to avoid reducing large torque. The size of magnetic transmission mechanism should be optimized for the design goal of large torque and low eddy current, avoiding overheating and making sure that the generator works normally.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on Application of Two Different Magnetic Materials in Rotor of Cylindrical Synchronous Generator to Produce Reluctance Torque

Synchronous generators are of two type’s salient pole type and round rotor type. The load angle curve of a cylindrical rotor synchronous machine comprises a single sine term only while in salient pole synchronous generators, power-angle characteristic has two terms. The first term is the fundamental component due to field excitation (the same as the cylindrical rotor) and the second term ...

متن کامل

Micro Machining of AISI 440C Stainless Steel using Magnetic Field and Magnetic Abrasive Particles

Magnetic abrasive finishing (MAF) is a micromachining process that uses magnetic field and magnetic abrasive particles to conduct the mechanism of material removal in micro-nanometer scales. In this paper, by an experimental method and statistical analysis, the effects of parameters like working gap, work-piece rotational speed and material removal mechanism (injection of abrasive slurry of Al<...

متن کامل

Micro Machining of AISI 440C Stainless Steel using Magnetic Field and Magnetic Abrasive Particles

Magnetic abrasive finishing (MAF) is a micromachining process that uses magnetic field and magnetic abrasive particles to conduct the mechanism of material removal in micro-nanometer scales. In this paper, by an experimental method and statistical analysis, the effects of parameters like working gap, work-piece rotational speed and material removal mechanism (injection of abrasive slurry of Al<...

متن کامل

Micromachining the Aluminium Tubes Using Abrasive Finishing in Alternating Magnetic Field

This study introduced a method based on magnetic field assisted finishing mechanism for micromachining the inner surfaces of Aluminum tubes. In this approach, using the alternating magnetic field of an AC electromotor, abrasive particles were formed as Magnetic Rods (Magnetic Clusters) and surface micromachining was carried out by the dynamic particular pattern made by an alternating magnetic f...

متن کامل

Analysis of Magnetic Flux Linkage Distribution in Salient-Pole Synchronous Generator with Different Kinds of Inter-Turn Winding Faults

A reliable and accurate diagnosis of inter-turn short circuit faults is a challenging problem in the area of fault diagnosis of electrical machines. The purpose of this challenge is to be more efficient in fault detection and to provide a reliable method with low-cost sensors and simple numerical algorithms which not only detect the occurrence of the fault, but also locate its position in the w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015